A High-Fidelity Cell Lineage Tracing Method for Obtaining Systematic Spatiotemporal Gene Expression Patterns in Caenorhabditis elegans
نویسندگان
چکیده
Advances in microscopy and fluorescent reporters have allowed us to detect the onset of gene expression on a cell-by-cell basis in a systemic fashion. This information, however, is often encoded in large repositories of images, and developing ways to extract this spatiotemporal expression data is a difficult problem that often uses complex domain-specific methods for each individual data set. We present a more unified approach that incorporates general previous information into a hierarchical probabilistic model to extract spatiotemporal gene expression from 4D confocal microscopy images of developing Caenorhabditis elegans embryos. This approach reduces the overall error rate of our automated lineage tracing pipeline by 3.8-fold, allowing us to routinely follow the C. elegans lineage to later stages of development, where individual neuronal subspecification becomes apparent. Unlike previous methods that often use custom approaches that are organism specific, our method uses generalized linear models and extensions of standard reversible jump Markov chain Monte Carlo methods that can be readily extended to other organisms for a variety of biological inference problems relating to cell fate specification. This modeling approach is flexible and provides tractable avenues for incorporating additional previous information into the model for similar difficult high-fidelity/low error tolerance image analysis problems for systematically applied genomic experiments.
منابع مشابه
A High Fidelity Cell Lineage Tracing Method for Obtaining Systematic Spatiotemporal Gene Expression Patterns in C. elegans
Advances in microscopy and fluorescent reporters have allowed us to detect the onset of gene expression on a cell by cell basis in a systemic fashion. This information, however, is often encoded in large repositories of images, and developing methods to extract this spatiotemporal expression data is a difficult problem that often employs complex domain specific methods for each individual data ...
متن کاملAutomated cell lineage tracing in Caenorhabditis elegans.
The invariant cell lineage and cell fate of Caenorhabditis elegans provide a unique opportunity to decode the molecular mechanisms of animal development. To exploit this opportunity, we have developed a system for automated cell lineage tracing during C. elegans embryogenesis, based on 3D, time-lapse imaging and automated image analysis. Using ubiquitously expressed histone-GFP fusion protein t...
متن کاملAutomated lineage and expression profiling in live Caenorhabditis elegans embryos.
Describing gene expression during animal development requires a way to quantitatively measure expression levels with cellular resolution and to describe how expression changes with time. Fluorescent protein reporters make it possible to measure expression dynamics in live cells by time-lapse microscopy, but it can be challenging to identify expressing cells in complex tissues and to compare exp...
متن کاملAnalysis of Cell Fate from Single-Cell Gene Expression Profiles in C. elegans
The C. elegans cell lineage provides a unique opportunity to look at how cell lineage affects patterns of gene expression. We developed an automatic cell lineage analyzer that converts high-resolution images of worms into a data table showing fluorescence expression with single-cell resolution. We generated expression profiles of 93 genes in 363 specific cells from L1 stage larvae and found tha...
متن کاملA first version of the Caenorhabditis elegans Promoterome.
An important aspect of the development of systems biology approaches in metazoans is the characterization of expression patterns of nearly all genes predicted from genome sequences. Such "localizome" maps should provide information on where (in what cells or tissues) and when (at what stage of development or under what conditions) genes are expressed. They should also indicate in what cellular ...
متن کامل